首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1051篇
  免费   290篇
  国内免费   166篇
测绘学   55篇
大气科学   79篇
地球物理   382篇
地质学   650篇
海洋学   240篇
天文学   27篇
综合类   29篇
自然地理   45篇
  2024年   2篇
  2023年   4篇
  2022年   25篇
  2021年   13篇
  2020年   23篇
  2019年   24篇
  2018年   31篇
  2017年   58篇
  2016年   55篇
  2015年   48篇
  2014年   82篇
  2013年   67篇
  2012年   63篇
  2011年   132篇
  2010年   55篇
  2009年   87篇
  2008年   76篇
  2007年   84篇
  2006年   81篇
  2005年   58篇
  2004年   67篇
  2003年   55篇
  2002年   51篇
  2001年   30篇
  2000年   24篇
  1999年   23篇
  1998年   33篇
  1997年   27篇
  1996年   28篇
  1995年   28篇
  1994年   11篇
  1993年   10篇
  1992年   13篇
  1991年   2篇
  1990年   9篇
  1989年   7篇
  1988年   5篇
  1986年   1篇
  1985年   8篇
  1984年   3篇
  1983年   1篇
  1978年   1篇
  1954年   2篇
排序方式: 共有1507条查询结果,搜索用时 15 毫秒
101.
Reconnaissance seismic shot in 1971/72 showed a number of well defined seismic anomalies within the East Sengkang Basin which were interpreted as buried reefs. Subsequent fieldwork revealed that Upper Miocene reefs outcropped along the southern margin of the basin. A drilling programme in 1975 and 1976 proved the presence of shallow, gas-bearing, Upper Miocene reefs in the northern part of the basin. Seismic acquisition and drilling during 1981 confirmed the economic significance of these discoveries, with four separate accumulations containing about 750 × 109 cubic feet of dry gas in place at an average depth of 700 m. Kampung Baru is the largest field and contains over half the total, both reservoir quality and gas deliverability are excellent. Deposition in the East Sengkang Basin probably started during the Early Miocene. A sequence of Lower Miocene mudstones and limestones unconformably overlies acoustic basement which consists of Eocene volcanics. During the tectonically active Middle Miocene, deposition was interrupted by two periods of deformation and erosion. Carbonate deposition became established in the Late Miocene with widespread development of platform limestones throughout the East Sengkang Basin. Thick pinnacle reef complexes developed in the areas where reef growth could keep pace with the relative rise in sea level. Most reef growth ceased at the end of the Miocene and subsequent renewed clastic sedimentation covered the irregular limestone surface. Late Pliocene regression culminated in the Holocene with erosion. The Walanae fault zone, part of a major regional sinistral strike-slip system, separates the East and West Sengkang Basins. Both normal and reverse faulting are inferred from seismic data and post Late Pliocene reverse faulting is seen in outcrop.  相似文献   
102.
Two sites of the Deep Sea Drilling Project in contrasting geologic settings provide a basis for comparison of the geochemical conditions associated with marine gas hydrates in continental margin sediments. Site 533 is located at 3191 m water depth on a spit-like extension of the continental rise on a passive margin in the Atlantic Ocean. Site 568, at 2031 m water depth, is in upper slope sediment of an active accretionary margin in the Pacific Ocean. Both sites are characterized by high rates of sedimentation, and the organic carbon contents of these sediments generally exceed 0.5%. Anomalous seismic reflections that transgress sedimentary structures and parallel the seafloor, suggested the presence of gas hydrates at both sites, and, during coring, small samples of gas hydrate were recovered at subbottom depths of 238m (Site 533) and 404 m (Site 568). The principal gaseous components of the gas hydrates wer methane, ethane, and CO2. Residual methane in sediments at both sites usually exceeded 10 mll?1 of wet sediment. Carbon isotopic compositions of methane, CO2, and ΣCO2 followed parallel trends with depth, suggesting that methane formed mainly as a result of biological reduction of oxidized carbon. Salinity of pore waters decreased with depth, a likely result of gas hydrate formation. These geochemical characteristics define some of the conditions associated with the occurrence of gas hydrates formed by in situ processes in continental margin sediments.  相似文献   
103.
A membrane-discriminated gas phase analyzer is proposed for multicomponent determinations. Nitrogengas flows countercurrent through outer and inner channels in a tube-in-tube arrangement. The onlycommunication between the two channels occurs through a 500μm aperture covered by a porous PTFEmembrane. A mixture of organic compounds (up to four components) is injected into the inner channelby a heated backflushed injector and the sample components diffusing into the outer channel aremonitored by a flame ionization detector (FID). A calibration set, consisting of pure components, binary,ternary and quaternary mixtures (a total of 64 samples), provides the known data base: temporal profilesof the FID output as a function of sample composition, Although the overall response behavior is nota linearly additive function of individual analyte concentrations, the use of successive inverse multiplelinear regression (while continually altering the choice of the calibration samples considered for theforward regression, on the basis of the most recent values of the predicted unknown sample composition)is shown to yield analytical results for unknown samples that are in good agreement with their true values.  相似文献   
104.
Models of the collapse of a protostellar cloud and the formation of the solar nebula reveal that the size of the nebula produced will be the larger of RCF ≡ J2/k2GM3and RV ≡ (GMv/2cc3)12 (where J, M, and cs are the total angular momentum, total mass, and sound speed of the protosetellar material; G is the gravitational constant; k is a number of order unity; and v is the effective viscosity in the nebula). From this result it can be deduced that low-mass nebulas are produced if P ≡ (RV/RCF)2 ? 1; “massive” nebulas result if P ? 1. Gravitational instabilities are expected to be important for the evolution of P ? 1 nebulas. The value of J distinguishes most current models of the solar nebula, since PJ?4. Analytic expressions for the surface density, nebular mass flux, and photospheric temperature distributions during the formation stage are presented for some simple models that illustrate the general properties of growing protostellar disks. It does not yet seem possible to rule out either P ? 1 or P < 1 for the solar nebula, but observed or possible heterogeneities in composition and angular-momentum orientation favor P < 1 models.  相似文献   
105.
塔里木盆地喀什凹陷克拉托天然气来源分析及聚气特征   总被引:2,自引:1,他引:1  
塔里木西南喀什凹陷的克拉托天然气主要表现为原油的溶解气或者湿气,甲烷含量为74.59%~85.58%,克4井和克30井天然气则为较干的湿气。克拉托天然气的δ13C1值为-41.2‰~-40.6‰,δ13C2值为-30.0‰~-27.4‰。气源对比表明克拉托天然气主要源自具有混源母质特征的中侏罗统湖相烃源岩,不同于源自石炭系烃源岩的阿克莫木天然气。喀什凹陷的中-下侏罗统烃源岩主要是由于新近系的巨厚沉积才从未成熟—低成熟阶段进入成熟—高成熟阶段,生成的油气在克拉托背斜圈闭中聚集,虽也属晚期成藏,却具有连续聚气的特征。上新世末期,喀什凹陷的周缘开始抬升,早期油气藏受到破坏,形成了现今的地表油气苗或油砂。  相似文献   
106.
A new instrument (LOPAP: LOng Path liquid Absorption Photometer) for the sensitive detection of nitric acid (HNO3) in the atmosphere is described. HNO3 is sampled in a temperature controlled stripping coil mounted in an external sampling module to minimize sampling artefacts in sampling lines. After conversion into a strongly absorbing dye, HNO3 is detected in long path absorption in special Teflon® AF 2400 tubes used as liquid core wave guides. For the correction of some interferences, due to for example HONO and particle nitrate, two channels are used in series. The interferences from several potential interfering compounds including particle nitrate were quantified in the laboratory and in a large outdoor simulation chamber. With the exception of the interference caused by N2O5, which is quantitatively measured by the instrument, all tested interferences can be corrected under atmospheric conditions. Thus, in the instrument only the sum of N(V) from HNO3 and N2O5 is determined, which is expected to be a common problem of wet chemical HNO3 instruments. The instrument has a detection limit of 5–30 pptv for a time response of 6–2 min, respectively and was validated against the FTIR technique in a large outdoor simulation chamber. In addition, the applicability of the instrument was demonstrated in a field campaign.  相似文献   
107.
We investigate the spatiotemporal nonlocality underlying fractional-derivative models as a possible explanation for regional-scale anomalous dispersion with heavy tails. Properties of four fractional-order advection–dispersion equation (fADE) models were analyzed and compared systematically, including the space fADEs with either maximally positive or negative skewness, the time fADE with a temporal fractional-derivative 0<γ<10<γ<1, and the extension of the time fADE with 1<γ<21<γ<2. Space fADEs describe the dependence of local concentration change on a wide range of spatial zones (i.e., the space nonlocality), while time fADEs describe dynamic mass exchange between mobile and multiple immobile phases and therefore record the temporal history of concentration “loading” (i.e., the time-nonlocality). We then applied the fADEs as models of anomalous dispersion to four extensively-studied, regional-scale, natural systems, including a hillslope composed of fractured soils, a river with simultaneous active flow zones and various dead-zones, a relatively homogeneous glaciofluvial aquifer dominated by stratified sand and gravel, and a highly heterogeneous alluvial aquifer containing both preferential flowpaths and abundant aquitards. We find that the anomalous dispersion observed at each site might not be characterized reasonably or sufficiently by previous studies. In particular, the use of the space fADE with less than maximally positive skewness implies a spatial dependence on downstream concentrations that may not be physically realistic for solute transport in watershed catchments and rivers (where the influence of dead-zones on solute transport can be described by a temporal, not spatial, fractional model). Field-scale transport studies show that large ranges of solute displacement can be described by a space nonlocal, fractional-derivative model, and long waiting times can be described efficiently by a time-nonlocal, fractional model. The unknown quantitative relationship between the nonlocal parameters and the heterogeneity, and the similarity in concentration profiles that are solutions to the different nonlocal transport models, all demonstrate the importance of distinguishing the representative nonlocality (time and/or space) for any given regional-scale anomalous dispersion process.  相似文献   
108.
Wang C  Sun H  Chang Y  Song Z  Qin X 《Marine pollution bulletin》2011,62(12):2714-2723
Six sediment samples collected from the Gulf of Mexico were analyzed. Total concentrations of the PAHs ranged from 52 to 403 ng g−1 dry weight. The lowest PAH concentration without 5–6 rings PAHs appeared in S-1 sample associated with gas hydrate or gas venting. Moreover, S-1 sample had the lowest organic carbon content with 0.85% and highest reduced sulfur level with 1.21% relative to other samples. And, analysis of the sources of PAHs in S-1 sample indicated that both pyrogenic and petrogenic sources, converserly, while S-8, S-10 and S-11 sample suggested petrogenic origin. The distribution of dibenzothiophene, fluorine and dibenzofuran and the maturity parameters of triaromatic steranes suggested that organic matters in S-1 sample were different from that in S-8, S-10 and S-11 sample. This study suggested that organic geochemical data could help in distinguish the characteristic of sediment associated with gas hydrate or with oil seepage.  相似文献   
109.
Effects of insufficient soil aeration on the functioning of plants form an important field of research. A well-known and frequently used utility to express oxygen stress experienced by plants is the Feddes-function. This function reduces root water uptake linearly between two constant pressure heads, representing threshold values for minimum and maximum oxygen deficiency. However, the correctness of this expression has never been evaluated and constant critical values for oxygen stress are likely to be inappropriate. On theoretical grounds it is expected that oxygen stress depends on various abiotic and biotic factors. In this paper, we propose a fundamentally different approach to assess oxygen stress: we built a plant physiological and soil physical process-based model to calculate the minimum gas filled porosity of the soil (gas_min) at which oxygen stress occurs.First, we calculated the minimum oxygen concentration in the gas phase of the soil needed to sustain the roots through (micro-scale) diffusion with just enough oxygen to respire. Subsequently, gas_min that corresponds to this minimum oxygen concentration was calculated from diffusion from the atmosphere through the soil (macro-scale).We analyzed the validity of constant critical values to represent oxygen stress in terms of gas_min, based on model simulations in which we distinguished different soil types and in which we varied temperature, organic matter content, soil depth and plant characteristics. Furthermore, in order to compare our model results with the Feddes-function, we linked root oxygen stress to root water uptake (through the sink term variable F, which is the ratio of actual and potential uptake).The simulations showed that gas_min is especially sensitive to soil temperature, plant characteristics (root dry weight and maintenance respiration coefficient) and soil depth but hardly to soil organic matter content. Moreover, gas_min varied considerably between soil types and was larger in sandy soils than in clayey soils. We demonstrated that F of the Feddes-function indeed decreases approximately linearly, but that actual oxygen stress already starts at drier conditions than according to the Feddes-function. How much drier is depended on the factors indicated above. Thus, the Feddes-function might cause large errors in the prediction of transpiration reduction and growth reduction through oxygen stress.We made our method easily accessible to others by implementing it in SWAP, a user-friendly soil water model that is coupled to plant growth. Since constant values for gas_min in plant and hydrological modeling appeared to be inappropriate, an integrated approach, including both physiological and physical processes, should be used instead. Therefore, we advocate using our method in all situations where oxygen stress could occur.  相似文献   
110.
Forthcoming human planetary exploration will require increased scientific return (both in real time and post-mission), longer surface stays, greater geographical coverage, longer and more frequent EVAs, and more operational complexities than during the Apollo missions. As such, there is a need to shift the nature of astronauts’ scientific capabilities to something akin to an experienced terrestrial field scientist. To achieve this aim, the authors present a case that astronaut training should include an Apollo-style curriculum based on traditional field school experiences, as well as full immersion in field science programs. Herein we propose four Learning Design Principles (LDPs) focused on optimizing astronaut learning in field science settings. The LDPs are as follows:
(1)
LDP#1: Provide multiple experiences: varied field science activities will hone astronauts’ abilities to adapt to novel scientific opportunities
(2)
LDP#2: Focus on the learner: fostering intrinsic motivation will orient astronauts towards continuous informal learning and a quest for mastery
(3)
LDP#3: Provide a relevant experience—the field site: field sites that share features with future planetary missions will increase the likelihood that astronauts will successfully transfer learning
(4)
LDP#4: Provide a social learning experience—the field science team and their activities: ensuring the field team includes members of varying levels of experience engaged in opportunities for discourse and joint problem solving will facilitate astronauts’ abilities to think and perform like a field scientist.
The proposed training program focuses on the intellectual and technical aspects of field science, as well as the cognitive manner in which field scientists experience, observe and synthesize their environment. The goal of the latter is to help astronauts develop the thought patterns and mechanics of an effective field scientist, thereby providing a broader base of experience and expertise than could be achieved from field school alone. This will enhance their ability to execute, explore and adapt as in-field situations require.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号